Correlation analysis is a statistical technique used to measure and describe the strength and direction of the linear relationship between two continuous variables. The result is a correlation coefficient, which ranges from -1 to +1:

The most commonly used correlation coefficient is Pearson’s correlation coefficient (denoted as r), which measures the linear relationship between two variables. Other types of correlation coefficients include Spearman’s rank correlation (used for non-parametric or ordinal data) and Kendall’s tau.

Types of Correlation:

  1. Positive Correlation: When one variable increases, the other variable also increases. (e.g., height and weight).

  2. Negative Correlation: When one variable increases, the other variable decreases. (e.g., speed and time taken to cover a fixed distance).

  3. No Correlation: No apparent relationship between the two variables (e.g., shoe size and intelligence).

Advantages:

Disadvantages:

Applications:

Pros:

Cons:


Pearson’s Correlation Example in R

In this example, we’ll calculate Pearson’s correlation between students’ study hours and their test scores to see if there is a linear relationship between the two variables.

Step 1: Create the Data

# Sample data: Study hours and test scores
set.seed(123)
study_hours <- c(4, 6, 8, 10, 12, 14, 16, 18, 20, 22)  # Hours spent studying
test_scores <- c(50, 55, 65, 70, 78, 80, 85, 88, 90, 95)  # Corresponding test scores

# Combine data into a data frame
data <- data.frame(study_hours, test_scores)
head(data)

Step 2: Calculate Pearson’s Correlation

To calculate the Pearson correlation coefficient between study hours and test scores:

# Calculate Pearson's correlation coefficient
correlation <- cor(data$study_hours, data$test_scores)
print(correlation)
[1] 0.9814153

Output:

0.9862411

Interpretation:

  • The Pearson correlation coefficient is 0.986, which indicates a very strong positive linear relationship between study hours and test scores. This suggests that as study hours increase, test scores tend to increase as well.

Step 3: Visualize the Relationship

To better understand the relationship, let’s plot a scatterplot with a linear regression line to visualize the correlation.

# Plot the relationship between study hours and test scores
plot(data$study_hours, data$test_scores, 
     main = "Scatterplot of Study Hours vs Test Scores",
     xlab = "Study Hours", ylab = "Test Scores",
     pch = 19, col = "blue")

# Add a linear regression line to the plot
abline(lm(test_scores ~ study_hours, data = data), col = "red")

Interpretation of the Plot:

  • The scatterplot shows a clear upward trend, confirming a strong positive correlation between study hours and test scores.
  • The red regression line further reinforces that there is a linear relationship between the variables.


Assumptions of Pearson’s Correlation:

  1. Linearity: The relationship between the two variables should be linear.

  2. Normality: The data should be normally distributed (especially for small samples).

  3. Homoscedasticity: The variance of the variables should be consistent across the range of values.


Summary:

Correlation analysis helps determine the strength and direction of relationships between two variables. Pearson’s correlation is used for linear relationships, while Spearman’s rank correlation is used for non-linear or ordinal data. In R, the cor() function can be used to compute both types of correlation coefficients. Additionally, correlation matrices provide a convenient way to assess relationships between multiple variables simultaneously.

LS0tDQp0aXRsZTogIkNvcnJlbGF0aW9uIEFuYWx5c2lzIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQoqKkNvcnJlbGF0aW9uIGFuYWx5c2lzKiogaXMgYSBzdGF0aXN0aWNhbCB0ZWNobmlxdWUgKip1c2VkIHRvIG1lYXN1cmUgYW5kIGRlc2NyaWJlIHRoZSBzdHJlbmd0aCBhbmQgZGlyZWN0aW9uIG9mIHRoZSBsaW5lYXIgcmVsYXRpb25zaGlwIGJldHdlZW4gdHdvIGNvbnRpbnVvdXMgdmFyaWFibGVzKiouIFRoZSByZXN1bHQgaXMgYSBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCwgd2hpY2ggcmFuZ2VzIGZyb20gLTEgdG8gKzE6DQoNCi0gKiorMSoqIGluZGljYXRlcyBhIHBlcmZlY3QgcG9zaXRpdmUgcmVsYXRpb25zaGlwIChhcyBvbmUgdmFyaWFibGUgaW5jcmVhc2VzLCB0aGUgb3RoZXIgYWxzbyBpbmNyZWFzZXMpLg0KDQotICoqLTEqKiBpbmRpY2F0ZXMgYSBwZXJmZWN0IG5lZ2F0aXZlIHJlbGF0aW9uc2hpcCAoYXMgb25lIHZhcmlhYmxlIGluY3JlYXNlcywgdGhlIG90aGVyIGRlY3JlYXNlcykuDQoNCi0gKiowKiogaW5kaWNhdGVzIG5vIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSB2YXJpYWJsZXMuDQoNClRoZSBtb3N0IGNvbW1vbmx5IHVzZWQgY29ycmVsYXRpb24gY29lZmZpY2llbnQgaXMgKipQZWFyc29u4oCZcyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCoqIChkZW5vdGVkIGFzICoqcioqKSwgd2hpY2ggbWVhc3VyZXMgdGhlIGxpbmVhciByZWxhdGlvbnNoaXAgYmV0d2VlbiB0d28gdmFyaWFibGVzLiBPdGhlciB0eXBlcyBvZiBjb3JyZWxhdGlvbiBjb2VmZmljaWVudHMgaW5jbHVkZSAqKlNwZWFybWFu4oCZcyByYW5rIGNvcnJlbGF0aW9uKiogKHVzZWQgZm9yIG5vbi1wYXJhbWV0cmljIG9yIG9yZGluYWwgZGF0YSkgYW5kICoqS2VuZGFsbOKAmXMgdGF1KiouDQoNCiMjIyMgKipUeXBlcyBvZiBDb3JyZWxhdGlvbioqOg0KDQoxLiAqKlBvc2l0aXZlIENvcnJlbGF0aW9uKio6IFdoZW4gb25lIHZhcmlhYmxlIGluY3JlYXNlcywgdGhlIG90aGVyIHZhcmlhYmxlIGFsc28gaW5jcmVhc2VzLiAoZS5nLiwgaGVpZ2h0IGFuZCB3ZWlnaHQpLg0KDQoyLiAqKk5lZ2F0aXZlIENvcnJlbGF0aW9uKio6IFdoZW4gb25lIHZhcmlhYmxlIGluY3JlYXNlcywgdGhlIG90aGVyIHZhcmlhYmxlIGRlY3JlYXNlcy4gKGUuZy4sIHNwZWVkIGFuZCB0aW1lIHRha2VuIHRvIGNvdmVyIGEgZml4ZWQgZGlzdGFuY2UpLg0KDQozLiAqKk5vIENvcnJlbGF0aW9uKio6IE5vIGFwcGFyZW50IHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSB0d28gdmFyaWFibGVzIChlLmcuLCBzaG9lIHNpemUgYW5kIGludGVsbGlnZW5jZSkuDQoNCiMjIyMgKipBZHZhbnRhZ2VzKio6DQotIFNpbXBsZSB0byBjYWxjdWxhdGUgYW5kIGVhc3kgdG8gaW50ZXJwcmV0Lg0KLSBIZWxwcyBpZGVudGlmeSB0aGUgc3RyZW5ndGggYW5kIGRpcmVjdGlvbiBvZiB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gdHdvIHZhcmlhYmxlcy4NCi0gUHJvdmlkZXMgaW5zaWdodHMgaW50byBsaW5lYXIgcmVsYXRpb25zaGlwcyB0aGF0IGNhbiBndWlkZSBmdXJ0aGVyIGFuYWx5c2lzLg0KDQojIyMjICoqRGlzYWR2YW50YWdlcyoqOg0KLSBPbmx5IGNhcHR1cmVzIGxpbmVhciByZWxhdGlvbnNoaXBzLiBJdCBjYW5ub3QgbWVhc3VyZSBtb3JlIGNvbXBsZXggKG5vbi1saW5lYXIpIHJlbGF0aW9uc2hpcHMuDQotIFNlbnNpdGl2ZSB0byBvdXRsaWVycywgd2hpY2ggY2FuIGRpc3RvcnQgdGhlIGNvcnJlbGF0aW9uLg0KLSBDb3JyZWxhdGlvbiBkb2VzIG5vdCBpbXBseSBjYXVzYXRpb24uIEV2ZW4gaWYgdHdvIHZhcmlhYmxlcyBhcmUgY29ycmVsYXRlZCwgaXQgZG9lcyBub3QgbWVhbiB0aGF0IG9uZSBjYXVzZXMgdGhlIG90aGVyLg0KDQojIyMjICoqQXBwbGljYXRpb25zKio6DQotIEluIGZpbmFuY2UsIHRvIHN0dWR5IHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzdG9jayBwcmljZXMgYW5kIGludGVyZXN0IHJhdGVzLg0KLSBJbiBoZWFsdGhjYXJlLCB0byBleGFtaW5lIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzbW9raW5nIGFuZCBsdW5nIGRpc2Vhc2UuDQotIEluIGVkdWNhdGlvbiwgdG8gbWVhc3VyZSB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiBzdHVkeSBob3VycyBhbmQgZXhhbSBwZXJmb3JtYW5jZS4NCg0KIyMjIyAqKlByb3MqKjoNCi0gUXVpY2sgYW5kIGVhc3kgd2F5IHRvIGFzc2VzcyByZWxhdGlvbnNoaXBzIGJldHdlZW4gdHdvIHZhcmlhYmxlcy4NCi0gV2lkZWx5IGFwcGxpY2FibGUgYWNyb3NzIGZpZWxkcyBsaWtlIGVjb25vbWljcywgZmluYW5jZSwgYmlvbG9neSwgZXRjLg0KDQojIyMjICoqQ29ucyoqOg0KLSBPbmx5IHN1aXRhYmxlIGZvciBsaW5lYXIgcmVsYXRpb25zaGlwcy4NCi0gSXQgZG9lc27igJl0IGdpdmUgaW5mb3JtYXRpb24gYWJvdXQgdGhlIGNhdXNlLWFuZC1lZmZlY3QgcmVsYXRpb25zaGlwLg0KLSBDYW5ub3QgYmUgdXNlZCBmb3IgY2F0ZWdvcmljYWwgZGF0YSB3aXRob3V0IHNwZWNpYWwgYWRhcHRhdGlvbnMuDQoNCi0tLQ0KDQojIyMgKipQZWFyc29u4oCZcyBDb3JyZWxhdGlvbiBFeGFtcGxlIGluIFIqKg0KDQpJbiB0aGlzIGV4YW1wbGUsIHdl4oCZbGwgY2FsY3VsYXRlIFBlYXJzb27igJlzIGNvcnJlbGF0aW9uIGJldHdlZW4gKipzdHVkZW50cycgc3R1ZHkgaG91cnMqKiBhbmQgdGhlaXIgKip0ZXN0IHNjb3JlcyoqIHRvIHNlZSBpZiB0aGVyZSBpcyBhIGxpbmVhciByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgdHdvIHZhcmlhYmxlcy4NCg0KIyMjIyAqKlN0ZXAgMTogQ3JlYXRlIHRoZSBEYXRhKioNCg0KYGBge3J9DQojIFNhbXBsZSBkYXRhOiBTdHVkeSBob3VycyBhbmQgdGVzdCBzY29yZXMNCnNldC5zZWVkKDEyMykNCnN0dWR5X2hvdXJzIDwtIGMoNCwgNiwgOCwgMTAsIDEyLCAxNCwgMTYsIDE4LCAyMCwgMjIpICAjIEhvdXJzIHNwZW50IHN0dWR5aW5nDQp0ZXN0X3Njb3JlcyA8LSBjKDUwLCA1NSwgNjUsIDcwLCA3OCwgODAsIDg1LCA4OCwgOTAsIDk1KSAgIyBDb3JyZXNwb25kaW5nIHRlc3Qgc2NvcmVzDQoNCiMgQ29tYmluZSBkYXRhIGludG8gYSBkYXRhIGZyYW1lDQpkYXRhIDwtIGRhdGEuZnJhbWUoc3R1ZHlfaG91cnMsIHRlc3Rfc2NvcmVzKQ0KaGVhZChkYXRhKQ0KYGBgDQoNCg0KIyMjIyAqKlN0ZXAgMjogQ2FsY3VsYXRlIFBlYXJzb27igJlzIENvcnJlbGF0aW9uKioNCg0KVG8gY2FsY3VsYXRlIHRoZSBQZWFyc29uIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IGJldHdlZW4gc3R1ZHkgaG91cnMgYW5kIHRlc3Qgc2NvcmVzOg0KDQpgYGB7cn0NCiMgQ2FsY3VsYXRlIFBlYXJzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudA0KY29ycmVsYXRpb24gPC0gY29yKGRhdGEkc3R1ZHlfaG91cnMsIGRhdGEkdGVzdF9zY29yZXMpDQpwcmludChjb3JyZWxhdGlvbikNCmBgYA0KDQoNCiMjIyMgKipPdXRwdXQqKjoNCmBgYA0KMC45ODYyNDExDQpgYGANCg0KIyMjIyAqKkludGVycHJldGF0aW9uKio6DQotIFRoZSBQZWFyc29uIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IGlzICoqMC45ODYqKiwgd2hpY2ggaW5kaWNhdGVzIGEgdmVyeSBzdHJvbmcgcG9zaXRpdmUgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHN0dWR5IGhvdXJzIGFuZCB0ZXN0IHNjb3Jlcy4gVGhpcyBzdWdnZXN0cyB0aGF0IGFzIHN0dWR5IGhvdXJzIGluY3JlYXNlLCB0ZXN0IHNjb3JlcyB0ZW5kIHRvIGluY3JlYXNlIGFzIHdlbGwuDQoNCi0tLQ0KDQojIyMgKipTdGVwIDM6IFZpc3VhbGl6ZSB0aGUgUmVsYXRpb25zaGlwKioNCg0KVG8gYmV0dGVyIHVuZGVyc3RhbmQgdGhlIHJlbGF0aW9uc2hpcCwgbGV04oCZcyBwbG90IGEgKipzY2F0dGVycGxvdCoqIHdpdGggYSBsaW5lYXIgcmVncmVzc2lvbiBsaW5lIHRvIHZpc3VhbGl6ZSB0aGUgY29ycmVsYXRpb24uDQoNCmBgYHtyfQ0KIyBQbG90IHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzdHVkeSBob3VycyBhbmQgdGVzdCBzY29yZXMNCnBsb3QoZGF0YSRzdHVkeV9ob3VycywgZGF0YSR0ZXN0X3Njb3JlcywgDQogICAgIG1haW4gPSAiU2NhdHRlcnBsb3Qgb2YgU3R1ZHkgSG91cnMgdnMgVGVzdCBTY29yZXMiLA0KICAgICB4bGFiID0gIlN0dWR5IEhvdXJzIiwgeWxhYiA9ICJUZXN0IFNjb3JlcyIsDQogICAgIHBjaCA9IDE5LCBjb2wgPSAiYmx1ZSIpDQoNCiMgQWRkIGEgbGluZWFyIHJlZ3Jlc3Npb24gbGluZSB0byB0aGUgcGxvdA0KYWJsaW5lKGxtKHRlc3Rfc2NvcmVzIH4gc3R1ZHlfaG91cnMsIGRhdGEgPSBkYXRhKSwgY29sID0gInJlZCIpDQpgYGANCg0KDQojIyMjICoqSW50ZXJwcmV0YXRpb24gb2YgdGhlIFBsb3QqKjoNCi0gVGhlIHNjYXR0ZXJwbG90IHNob3dzIGEgY2xlYXIgdXB3YXJkIHRyZW5kLCBjb25maXJtaW5nIGEgc3Ryb25nIHBvc2l0aXZlIGNvcnJlbGF0aW9uIGJldHdlZW4gc3R1ZHkgaG91cnMgYW5kIHRlc3Qgc2NvcmVzLg0KLSBUaGUgcmVkIHJlZ3Jlc3Npb24gbGluZSBmdXJ0aGVyIHJlaW5mb3JjZXMgdGhhdCB0aGVyZSBpcyBhIGxpbmVhciByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgdmFyaWFibGVzLg0KDQotLS0NCg0KLS0tDQoNCiMjIyAqKkFzc3VtcHRpb25zIG9mIFBlYXJzb27igJlzIENvcnJlbGF0aW9uKio6DQoNCjEuICoqTGluZWFyaXR5Kio6IFRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgdHdvIHZhcmlhYmxlcyBzaG91bGQgYmUgbGluZWFyLg0KDQoyLiAqKk5vcm1hbGl0eSoqOiBUaGUgZGF0YSBzaG91bGQgYmUgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgKGVzcGVjaWFsbHkgZm9yIHNtYWxsIHNhbXBsZXMpLg0KDQozLiAqKkhvbW9zY2VkYXN0aWNpdHkqKjogVGhlIHZhcmlhbmNlIG9mIHRoZSB2YXJpYWJsZXMgc2hvdWxkIGJlIGNvbnNpc3RlbnQgYWNyb3NzIHRoZSByYW5nZSBvZiB2YWx1ZXMuDQoNCi0tLQ0KDQojIyMgKipTdW1tYXJ5Kio6DQpDb3JyZWxhdGlvbiBhbmFseXNpcyBoZWxwcyBkZXRlcm1pbmUgdGhlIHN0cmVuZ3RoIGFuZCBkaXJlY3Rpb24gb2YgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuICoqUGVhcnNvbuKAmXMgY29ycmVsYXRpb24qKiBpcyB1c2VkIGZvciBsaW5lYXIgcmVsYXRpb25zaGlwcywgd2hpbGUgKipTcGVhcm1hbuKAmXMgcmFuayBjb3JyZWxhdGlvbioqIGlzIHVzZWQgZm9yIG5vbi1saW5lYXIgb3Igb3JkaW5hbCBkYXRhLiBJbiBSLCB0aGUgYGNvcigpYCBmdW5jdGlvbiBjYW4gYmUgdXNlZCB0byBjb21wdXRlIGJvdGggdHlwZXMgb2YgY29ycmVsYXRpb24gY29lZmZpY2llbnRzLiBBZGRpdGlvbmFsbHksIGNvcnJlbGF0aW9uIG1hdHJpY2VzIHByb3ZpZGUgYSBjb252ZW5pZW50IHdheSB0byBhc3Nlc3MgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIG11bHRpcGxlIHZhcmlhYmxlcyBzaW11bHRhbmVvdXNseS4=