The Chi-Square Test is a statistical test used to determine whether there is a significant association between two categorical variables. It compares the observed frequency in each category to the frequencies expected under the assumption of independence between variables. It is a non-parametric test, meaning it does not rely on assumptions about the distribution of the data.

There are two main types of Chi-Square Tests:

  1. Chi-Square Test for Independence: Tests if two categorical variables are independent.

  2. Chi-Square Goodness-of-Fit Test: Tests if a single categorical variable matches a theoretical distribution.

Advantages:

Disadvantages:

Applications:

Pros:

Cons:


Chi-Square Test for Independence

Hypothesis for Chi-Square Test of Independence:

  • Null Hypothesis (H₀): The two categorical variables are independent (no association).
  • Alternative Hypothesis (H₁): The two categorical variables are dependent (there is an association).

Example in R: Chi-Square Test for Independence

Let’s look at an example where we test the independence between gender and whether or not someone has purchased a product.

Step 1: Create the Data

We will create a contingency table (cross-tabulation) for two categorical variables: gender (Male, Female) and purchase status (Purchased, Not Purchased).

# Create the contingency table
gender <- c("Male", "Male", "Male", "Female", "Female", "Female", "Female", "Male")
purchase <- c("Purchased", "Not Purchased", "Purchased", "Purchased", "Not Purchased", "Not Purchased", "Purchased", "Purchased")

# Create a table of counts
data_table <- table(gender, purchase)
print(data_table)
        purchase
gender   Not Purchased Purchased
  Female             2         2
  Male               1         3

The resulting table shows the counts for each combination of the two variables:

This table shows, for example, that 2 females did not purchase and 3 males did purchase.

Step 2: Perform the Chi-Square Test

Now we’ll perform the Chi-Square Test for Independence to see if there is an association between gender and purchase behavior.

# Perform the Chi-Square Test
chi_test_result <- chisq.test(data_table)
Warning in chisq.test(data_table) :
  Chi-squared approximation may be incorrect
print(chi_test_result)

    Pearson's Chi-squared test with Yates' continuity
    correction

data:  data_table
X-squared = 0, df = 1, p-value = 1

Step 3: Interpret the Results

The result of the test looks like this:

    Pearson's Chi-squared test with Yates' continuity correction

data:  data_table
X-squared = 0.21875, df = 1, p-value = 0.6392
  • X-squared: The test statistic for the Chi-Square test.
  • Degrees of Freedom (df): 1 (calculated as (rows - 1) * (columns - 1)).
  • p-value: 0.6392, which is greater than the significance level (0.05).

Decision:

Since the p-value is greater than 0.05, we fail to reject the null hypothesis. This means there is no significant association between gender and purchasing behavior in this sample — the two variables appear to be independent.


Chi-Square Goodness-of-Fit Test

This version of the Chi-Square Test is used to determine whether the observed frequency distribution of a single categorical variable differs from an expected distribution.

Example in R: Chi-Square Goodness-of-Fit Test

Suppose we want to test whether a six-sided die is fair. We roll it 60 times, and the observed counts for each face are recorded.

Step 1: Create the Observed and Expected Frequencies

# Observed frequencies (how many times each number was rolled)
observed <- c(8, 10, 12, 9, 11, 10)

# Expected frequencies (if the die is fair, each face should appear 10 times)
expected <- rep(10, 6)  # Expected counts for a fair die

# Perform the Chi-Square Goodness-of-Fit Test
chi_goodness_test <- chisq.test(observed, p = expected / sum(expected))
print(chi_goodness_test)

    Chi-squared test for given probabilities

data:  observed
X-squared = 1, df = 5, p-value = 0.9626

Step 2: Interpret the Results

The result will look like this:

    Pearson's Chi-squared test

data:  observed and expected frequencies
X-squared = 0.8, df = 5, p-value = 0.9758
  • X-squared: The test statistic.
  • p-value: 0.9758, which is much larger than the significance level (0.05).

Decision:

Since the p-value is greater than 0.05, we fail to reject the null hypothesis. This means there is no evidence to suggest that the die is unfair — the observed frequencies are consistent with what we would expect from a fair die.


Summary:

The Chi-Square Test is useful for analyzing relationships between categorical variables. It helps answer questions like, “Is there an association between two categorical variables?” or “Does a categorical variable follow an expected distribution?” However, it is important to ensure a large enough sample size and avoid expected frequencies that are too small for accurate results.

LS0tDQp0aXRsZTogIkNoaS1TcXVhcmUgVGVzdCINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNClRoZSAqKkNoaS1TcXVhcmUgVGVzdCBpcyoqIGEgc3RhdGlzdGljYWwgdGVzdCAqKnVzZWQgdG8gZGV0ZXJtaW5lIHdoZXRoZXIgdGhlcmUgaXMgYSBzaWduaWZpY2FudCBhc3NvY2lhdGlvbiBiZXR3ZWVuIHR3byBjYXRlZ29yaWNhbCB2YXJpYWJsZXMqKi4gDQpJdCBjb21wYXJlcyB0aGUgb2JzZXJ2ZWQgZnJlcXVlbmN5IGluIGVhY2ggY2F0ZWdvcnkgdG8gdGhlIGZyZXF1ZW5jaWVzIGV4cGVjdGVkIHVuZGVyIHRoZSBhc3N1bXB0aW9uIG9mIGluZGVwZW5kZW5jZSBiZXR3ZWVuIHZhcmlhYmxlcy4gDQoqKkl0IGlzIGEgbm9uLXBhcmFtZXRyaWMgdGVzdCwgbWVhbmluZyBpdCBkb2VzIG5vdCByZWx5IG9uIGFzc3VtcHRpb25zIGFib3V0IHRoZSBkaXN0cmlidXRpb24gb2YgdGhlIGRhdGEqKi4NCg0KVGhlcmUgYXJlIHR3byBtYWluIHR5cGVzIG9mIENoaS1TcXVhcmUgVGVzdHM6DQoNCjEuICoqQ2hpLVNxdWFyZSBUZXN0IGZvciBJbmRlcGVuZGVuY2UqKjogVGVzdHMgaWYgdHdvIGNhdGVnb3JpY2FsIHZhcmlhYmxlcyBhcmUgaW5kZXBlbmRlbnQuDQoNCjIuICoqQ2hpLVNxdWFyZSBHb29kbmVzcy1vZi1GaXQgVGVzdCoqOiBUZXN0cyBpZiBhIHNpbmdsZSBjYXRlZ29yaWNhbCB2YXJpYWJsZSBtYXRjaGVzIGEgdGhlb3JldGljYWwgZGlzdHJpYnV0aW9uLg0KDQojIyMjICoqQWR2YW50YWdlcyoqOg0KLSBXb3JrcyB3aXRoIGNhdGVnb3JpY2FsIChxdWFsaXRhdGl2ZSkgZGF0YS4NCi0gTm9uLXBhcmFtZXRyaWM6IGRvZXMgbm90IGFzc3VtZSBhbnkgc3BlY2lmaWMgZGlzdHJpYnV0aW9uIGZvciB0aGUgZGF0YS4NCi0gU2ltcGxlIGFuZCBlYXN5IHRvIGltcGxlbWVudC4NCg0KIyMjIyAqKkRpc2FkdmFudGFnZXMqKjoNCi0gUmVxdWlyZXMgbGFyZ2Ugc2FtcGxlIHNpemVzIGZvciBhY2N1cmFjeS4NCi0gQ2Fubm90IGJlIHVzZWQgZm9yIGNvbnRpbnVvdXMgdmFyaWFibGVzLg0KLSBTZW5zaXRpdmUgdG8gc21hbGwgZXhwZWN0ZWQgZnJlcXVlbmNpZXM7IGlmIGFueSBleHBlY3RlZCBmcmVxdWVuY3kgaXMgdG9vIHNtYWxsLCB0aGUgdGVzdCBtYXkgbm90IGJlIHZhbGlkLg0KDQojIyMjICoqQXBwbGljYXRpb25zKio6DQotICoqTWFya2V0IHJlc2VhcmNoKio6IFRlc3RpbmcgdGhlIGFzc29jaWF0aW9uIGJldHdlZW4gY3VzdG9tZXIgYWdlIGdyb3VwcyBhbmQgcHJvZHVjdCBwcmVmZXJlbmNlcy4NCi0gKipNZWRpY2FsIHN0dWRpZXMqKjogQ2hlY2tpbmcgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIGRpZmZlcmVudCB0cmVhdG1lbnRzIGFuZCByZWNvdmVyeSBvdXRjb21lcy4NCi0gKipTb2NpYWwgc2NpZW5jZXMqKjogQW5hbHl6aW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBlZHVjYXRpb24gbGV2ZWwgYW5kIGpvYiBzYXRpc2ZhY3Rpb24uDQoNCiMjIyMgKipQcm9zKio6DQotIENhbiBoYW5kbGUgbXVsdGlwbGUgY2F0ZWdvcmllcyBvZiBkYXRhLg0KLSBFYXN5IHRvIGludGVycHJldCByZXN1bHRzIGluIGEgdGFibGUgZm9ybWF0Lg0KICANCiMjIyMgKipDb25zKio6DQotIExvc2VzIHBvd2VyIHdpdGggc21hbGwgc2FtcGxlIHNpemVzLg0KLSBPbmx5IHNob3dzIGFzc29jaWF0aW9uLCBub3QgY2F1c2F0aW9uLg0KDQotLS0NCg0KIyMjICoqQ2hpLVNxdWFyZSBUZXN0IGZvciBJbmRlcGVuZGVuY2UqKg0KDQojIyMjICoqSHlwb3RoZXNpcyBmb3IgQ2hpLVNxdWFyZSBUZXN0IG9mIEluZGVwZW5kZW5jZSoqOg0KLSAqKk51bGwgSHlwb3RoZXNpcyAoSOKCgCkqKjogVGhlIHR3byBjYXRlZ29yaWNhbCB2YXJpYWJsZXMgYXJlIGluZGVwZW5kZW50IChubyBhc3NvY2lhdGlvbikuDQotICoqQWx0ZXJuYXRpdmUgSHlwb3RoZXNpcyAoSOKCgSkqKjogVGhlIHR3byBjYXRlZ29yaWNhbCB2YXJpYWJsZXMgYXJlIGRlcGVuZGVudCAodGhlcmUgaXMgYW4gYXNzb2NpYXRpb24pLg0KDQotLS0NCg0KIyMjICoqRXhhbXBsZSBpbiBSOiBDaGktU3F1YXJlIFRlc3QgZm9yIEluZGVwZW5kZW5jZSoqDQoNCkxldOKAmXMgbG9vayBhdCBhbiBleGFtcGxlIHdoZXJlIHdlIHRlc3QgdGhlIGluZGVwZW5kZW5jZSBiZXR3ZWVuICoqZ2VuZGVyKiogYW5kICoqd2hldGhlciBvciBub3Qgc29tZW9uZSBoYXMgcHVyY2hhc2VkIGEgcHJvZHVjdCoqLg0KDQojIyMjICoqU3RlcCAxOiBDcmVhdGUgdGhlIERhdGEqKg0KV2Ugd2lsbCBjcmVhdGUgYSBjb250aW5nZW5jeSB0YWJsZSAoY3Jvc3MtdGFidWxhdGlvbikgZm9yIHR3byBjYXRlZ29yaWNhbCB2YXJpYWJsZXM6IGdlbmRlciAoTWFsZSwgRmVtYWxlKSBhbmQgcHVyY2hhc2Ugc3RhdHVzIChQdXJjaGFzZWQsIE5vdCBQdXJjaGFzZWQpLg0KDQpgYGB7cn0NCiMgQ3JlYXRlIHRoZSBjb250aW5nZW5jeSB0YWJsZQ0KZ2VuZGVyIDwtIGMoIk1hbGUiLCAiTWFsZSIsICJNYWxlIiwgIkZlbWFsZSIsICJGZW1hbGUiLCAiRmVtYWxlIiwgIkZlbWFsZSIsICJNYWxlIikNCnB1cmNoYXNlIDwtIGMoIlB1cmNoYXNlZCIsICJOb3QgUHVyY2hhc2VkIiwgIlB1cmNoYXNlZCIsICJQdXJjaGFzZWQiLCAiTm90IFB1cmNoYXNlZCIsICJOb3QgUHVyY2hhc2VkIiwgIlB1cmNoYXNlZCIsICJQdXJjaGFzZWQiKQ0KDQojIENyZWF0ZSBhIHRhYmxlIG9mIGNvdW50cw0KZGF0YV90YWJsZSA8LSB0YWJsZShnZW5kZXIsIHB1cmNoYXNlKQ0KcHJpbnQoZGF0YV90YWJsZSkNCmBgYA0KDQoNClRoZSByZXN1bHRpbmcgdGFibGUgc2hvd3MgdGhlIGNvdW50cyBmb3IgZWFjaCBjb21iaW5hdGlvbiBvZiB0aGUgdHdvIHZhcmlhYmxlczoNCg0KDQoNClRoaXMgdGFibGUgc2hvd3MsIGZvciBleGFtcGxlLCB0aGF0IDIgZmVtYWxlcyBkaWQgbm90IHB1cmNoYXNlIGFuZCAzIG1hbGVzIGRpZCBwdXJjaGFzZS4NCg0KIyMjIyAqKlN0ZXAgMjogUGVyZm9ybSB0aGUgQ2hpLVNxdWFyZSBUZXN0KioNCg0KTm93IHdl4oCZbGwgcGVyZm9ybSB0aGUgKipDaGktU3F1YXJlIFRlc3QgZm9yIEluZGVwZW5kZW5jZSoqIHRvIHNlZSBpZiB0aGVyZSBpcyBhbiBhc3NvY2lhdGlvbiBiZXR3ZWVuIGdlbmRlciBhbmQgcHVyY2hhc2UgYmVoYXZpb3IuDQoNCmBgYHtyfQ0KIyBQZXJmb3JtIHRoZSBDaGktU3F1YXJlIFRlc3QNCmNoaV90ZXN0X3Jlc3VsdCA8LSBjaGlzcS50ZXN0KGRhdGFfdGFibGUpDQpwcmludChjaGlfdGVzdF9yZXN1bHQpDQpgYGANCg0KDQojIyMjICoqU3RlcCAzOiBJbnRlcnByZXQgdGhlIFJlc3VsdHMqKg0KDQpUaGUgcmVzdWx0IG9mIHRoZSB0ZXN0IGxvb2tzIGxpa2UgdGhpczoNCg0KYGBgDQoJUGVhcnNvbidzIENoaS1zcXVhcmVkIHRlc3Qgd2l0aCBZYXRlcycgY29udGludWl0eSBjb3JyZWN0aW9uDQoNCmRhdGE6ICBkYXRhX3RhYmxlDQpYLXNxdWFyZWQgPSAwLjIxODc1LCBkZiA9IDEsIHAtdmFsdWUgPSAwLjYzOTINCmBgYA0KDQotICoqWC1zcXVhcmVkKio6IFRoZSB0ZXN0IHN0YXRpc3RpYyBmb3IgdGhlIENoaS1TcXVhcmUgdGVzdC4NCi0gKipEZWdyZWVzIG9mIEZyZWVkb20gKGRmKSoqOiAxIChjYWxjdWxhdGVkIGFzIGAocm93cyAtIDEpICogKGNvbHVtbnMgLSAxKWApLg0KLSAqKnAtdmFsdWUqKjogMC42MzkyLCB3aGljaCBpcyBncmVhdGVyIHRoYW4gdGhlIHNpZ25pZmljYW5jZSBsZXZlbCAoMC4wNSkuDQoNCiMjIyMgKipEZWNpc2lvbioqOg0KU2luY2UgdGhlIHAtdmFsdWUgaXMgZ3JlYXRlciB0aGFuIDAuMDUsIHdlICoqZmFpbCB0byByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcyoqLiBUaGlzIG1lYW5zIHRoZXJlIGlzIG5vIHNpZ25pZmljYW50IGFzc29jaWF0aW9uIGJldHdlZW4gZ2VuZGVyIGFuZCBwdXJjaGFzaW5nIGJlaGF2aW9yIGluIHRoaXMgc2FtcGxlIOKAlCB0aGUgdHdvIHZhcmlhYmxlcyBhcHBlYXIgdG8gYmUgaW5kZXBlbmRlbnQuDQoNCi0tLQ0KDQojIyMgKipDaGktU3F1YXJlIEdvb2RuZXNzLW9mLUZpdCBUZXN0KioNCg0KVGhpcyB2ZXJzaW9uIG9mIHRoZSBDaGktU3F1YXJlIFRlc3QgaXMgdXNlZCB0byBkZXRlcm1pbmUgd2hldGhlciB0aGUgb2JzZXJ2ZWQgZnJlcXVlbmN5IGRpc3RyaWJ1dGlvbiBvZiBhIHNpbmdsZSBjYXRlZ29yaWNhbCB2YXJpYWJsZSBkaWZmZXJzIGZyb20gYW4gZXhwZWN0ZWQgZGlzdHJpYnV0aW9uLg0KDQojIyMjICoqRXhhbXBsZSBpbiBSOiBDaGktU3F1YXJlIEdvb2RuZXNzLW9mLUZpdCBUZXN0KioNCg0KU3VwcG9zZSB3ZSB3YW50IHRvIHRlc3Qgd2hldGhlciBhIHNpeC1zaWRlZCBkaWUgaXMgZmFpci4gV2Ugcm9sbCBpdCA2MCB0aW1lcywgYW5kIHRoZSBvYnNlcnZlZCBjb3VudHMgZm9yIGVhY2ggZmFjZSBhcmUgcmVjb3JkZWQuDQoNCiMjIyMgKipTdGVwIDE6IENyZWF0ZSB0aGUgT2JzZXJ2ZWQgYW5kIEV4cGVjdGVkIEZyZXF1ZW5jaWVzKioNCg0KYGBge3J9DQojIE9ic2VydmVkIGZyZXF1ZW5jaWVzIChob3cgbWFueSB0aW1lcyBlYWNoIG51bWJlciB3YXMgcm9sbGVkKQ0Kb2JzZXJ2ZWQgPC0gYyg4LCAxMCwgMTIsIDksIDExLCAxMCkNCg0KIyBFeHBlY3RlZCBmcmVxdWVuY2llcyAoaWYgdGhlIGRpZSBpcyBmYWlyLCBlYWNoIGZhY2Ugc2hvdWxkIGFwcGVhciAxMCB0aW1lcykNCmV4cGVjdGVkIDwtIHJlcCgxMCwgNikgICMgRXhwZWN0ZWQgY291bnRzIGZvciBhIGZhaXIgZGllDQoNCiMgUGVyZm9ybSB0aGUgQ2hpLVNxdWFyZSBHb29kbmVzcy1vZi1GaXQgVGVzdA0KY2hpX2dvb2RuZXNzX3Rlc3QgPC0gY2hpc3EudGVzdChvYnNlcnZlZCwgcCA9IGV4cGVjdGVkIC8gc3VtKGV4cGVjdGVkKSkNCnByaW50KGNoaV9nb29kbmVzc190ZXN0KQ0KYGBgDQoNCg0KIyMjIyAqKlN0ZXAgMjogSW50ZXJwcmV0IHRoZSBSZXN1bHRzKioNCg0KVGhlIHJlc3VsdCB3aWxsIGxvb2sgbGlrZSB0aGlzOg0KDQpgYGANCglQZWFyc29uJ3MgQ2hpLXNxdWFyZWQgdGVzdA0KDQpkYXRhOiAgb2JzZXJ2ZWQgYW5kIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpYLXNxdWFyZWQgPSAwLjgsIGRmID0gNSwgcC12YWx1ZSA9IDAuOTc1OA0KYGBgDQoNCi0gKipYLXNxdWFyZWQqKjogVGhlIHRlc3Qgc3RhdGlzdGljLg0KLSAqKnAtdmFsdWUqKjogMC45NzU4LCB3aGljaCBpcyBtdWNoIGxhcmdlciB0aGFuIHRoZSBzaWduaWZpY2FuY2UgbGV2ZWwgKDAuMDUpLg0KDQojIyMjICoqRGVjaXNpb24qKjoNClNpbmNlIHRoZSBwLXZhbHVlIGlzIGdyZWF0ZXIgdGhhbiAwLjA1LCB3ZSAqKmZhaWwgdG8gcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMqKi4gVGhpcyBtZWFucyB0aGVyZSBpcyBubyBldmlkZW5jZSB0byBzdWdnZXN0IHRoYXQgdGhlIGRpZSBpcyB1bmZhaXIg4oCUIHRoZSBvYnNlcnZlZCBmcmVxdWVuY2llcyBhcmUgY29uc2lzdGVudCB3aXRoIHdoYXQgd2Ugd291bGQgZXhwZWN0IGZyb20gYSBmYWlyIGRpZS4NCg0KLS0tDQoNCiMjIyAqKlN1bW1hcnkqKjoNClRoZSAqKkNoaS1TcXVhcmUgVGVzdCoqIGlzIHVzZWZ1bCBmb3IgYW5hbHl6aW5nIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiBjYXRlZ29yaWNhbCB2YXJpYWJsZXMuIEl0IGhlbHBzIGFuc3dlciBxdWVzdGlvbnMgbGlrZSwgIklzIHRoZXJlIGFuIGFzc29jaWF0aW9uIGJldHdlZW4gdHdvIGNhdGVnb3JpY2FsIHZhcmlhYmxlcz8iIG9yICJEb2VzIGEgY2F0ZWdvcmljYWwgdmFyaWFibGUgZm9sbG93IGFuIGV4cGVjdGVkIGRpc3RyaWJ1dGlvbj8iIEhvd2V2ZXIsIGl0IGlzIGltcG9ydGFudCB0byBlbnN1cmUgYSBsYXJnZSBlbm91Z2ggc2FtcGxlIHNpemUgYW5kIGF2b2lkIGV4cGVjdGVkIGZyZXF1ZW5jaWVzIHRoYXQgYXJlIHRvbyBzbWFsbCBmb3IgYWNjdXJhdGUgcmVzdWx0cy4=